Corrigendum

S. D. Fisher and M. I. Stessin

Department of Mathematics, Northwestern Unilersity, Evanston, Illinois 60208

Volume 67, Number 2 (1991), in the article "The n-Width of the Unit Ball of H^{q}," by S. D. Fisher and M. I. Stessin, pages 347-356: Several people have kindly pointed out to us that the proof of the upper bound in our article for the linear n-width of the unit ball of H^{q} in L^{p} is incorrect. This corrigendum provides a correct proof in two important cases: when $p \leq q$ or when $q=2$ (and p is any number.) Thus, the equalities stated are proved for the case $p \leq q$ and for the case when $p>q=2$ and the hyperbolic radius r_{0} of E satisfies $\left.0<r_{0}<(1-\cos (\pi / p)) / \sin (\pi / p)\right)=$ $\tan (\pi / 2 p)$.

First suppose that $p \leq q$. Let B be a Blaschke product of degree r, $r \leq n$, with zeros at $\left\{z_{1}, \ldots, z_{r}\right\}$, and let g be the (unique) normalized solution of (1) for the measure $|B|^{p} d \mu$. Define $T: H^{q} \rightarrow L^{p}$ by

$$
T f(z)=B(z) g(z) \int\left[f\left(e^{i \theta}\right) / B\left(e^{i \theta}\right) g\left(e^{i \theta}\right)\right] P\left(z ; e^{i \theta}\right) d \theta
$$

where $P\left(z ; e^{i \theta}\right)$ is the Poisson kernel for z. It is easy to verify that $T f=f$ when f vanishes at the zeros of B. In general, let $\phi_{1}, \ldots, \phi_{r}$ be bounded analytic functions on Δ such that $\phi_{i}\left(z_{j}\right)=\delta_{i j}$. Then $f=f-\Sigma_{1}^{r} f\left(z_{j}\right) \phi_{j}+$ $\sum_{1}^{r} f\left(z_{j}\right) \phi_{j}=g+\sum_{1}^{r} f\left(z_{j}\right) \phi_{j}$, where g vanishes at z_{1}, \ldots, z_{r}. Hence,

$$
\begin{aligned}
T f & =T g+T\left(\sum_{1}^{r} f\left(z_{j}\right) \phi_{j}\right)=f-\sum_{1}^{r} f\left(z_{j}\right) \phi_{j}+\sum_{1}^{r} f\left(z_{j}\right) T \phi_{j} \\
& =f-\sum_{1}^{r} f\left(z_{j}\right)\left(\phi_{j}-T \phi_{j}\right),
\end{aligned}
$$

which shows that $T=I-P$, where P is linear of rank $r \leq n$. Thus, the linear n-width of the unit ball of H^{q} in L^{p} is certainly bounded above by the norm of T. However, for f in the unit ball of H^{q}, we have

$$
\begin{aligned}
\int_{E} \mid B & \left.(z) g(z) \int_{0}^{2 \pi}\left[f\left(e^{i \theta}\right) / B\left(e^{i \theta}\right) g\left(e^{i \theta}\right)\right] P\left(z ; e^{i \theta}\right) d \theta\right|^{p} d \mu(z) \\
& \leq \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right) / g\left(e^{i \theta}\right)\right|^{p} \int_{E}|B(z) g(z)|^{p} P\left(z ; e^{i \theta}\right) d \mu(z) d \theta \\
& =\delta^{p} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right) / g\left(e^{i \theta}\right)\right|^{p}\left|g\left(e^{i \theta}\right)\right|^{q} d \theta \\
& =\delta^{p} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p}\left|g\left(e^{i \theta}\right)\right|^{q-p} d \theta \\
& \leq \delta^{p}=\sup \left\{\int_{E}|B(z) h(z)|^{p} d \mu(z): h \in A_{q}\right\} \\
& =\sup \left\{\left(\|f\|_{p}\right)^{p}: f \in A_{q} \text { and } f\left(z_{k}\right)=0, k=1, \ldots, r\right\} .
\end{aligned}
$$

Because B is an arbitrary Blaschke product of degree n or less, this establishes that the linear n-width is no more than
$\inf \left[\sup \left\{\|f\|_{p}: f \in A_{q}\right.\right.$ and $\left.\left.f\left(z_{k}\right)=0, k=1, \ldots, r\right\}: z_{1}, \ldots, z_{r} \in \Delta, r \leq n\right]$.
However, this number is already known to be the lower bound for both the Gelfand and the Kolmogorov n-widths, so that equality is established.

The case $q=2$ is easier. Let z_{1}, \ldots, z_{n} be (distinct) points of Δ, let $f \in A_{2}$, and let T be the orthogonal projection of H^{2} onto the subspace of H^{2} functions which vanish at the zeros of B. Then $I-T$ has rank n and T has operator norm one so that $T f=B h$, where h has H^{2} norm at most one. Therefore, $\|T f\|_{p}=\|B h\|_{p} \leq \sup \left\{\|f\|_{p}: f \in A_{2}\right.$ and $f\left(z_{k}\right)=0$, $k=1, \ldots, n\}$. Since B is an arbitrary Blaschke product, this shows that the linear n-width is no more than

$$
\inf \left[\sup \left\{\|f\|_{p}: f \in A_{2} \text { and } f\left(z_{k}\right)=0, k=1, \ldots, r\right\}: z_{1}, \ldots, z_{n} \in \Delta\right]
$$

and we are done.

